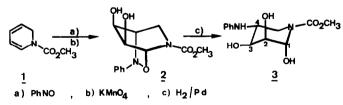
SYNTHESES OF RACEMIC DIAMINO-DIDEOXY-LYXOPYRANOSE DERIVATIVES USING ACYLNITROSO DIENOPHILES (1).


Albert DEFOIN^{**}, Christian SCHMIDLIN and Jacques STREITH Ecole Nationale Supérieure de Chimie; Université de Haute-Alsace F-68093 MULHOUSE Cédex FRANCE

<u>Summary</u>. Acylnitroso derivatives, which are obtained by <u>in situ</u> oxidation of the corresponding hydroxamic acids with tetraalkylammonium iodate, react instantaneously in the presence of dihydropyridine <u>1</u> leading to the Diels-Alder adducts <u>4</u> and <u>5</u>. These latter ones were transformed stereospecifically into the racemic diaminodideoxylyxose derivatives 8 and 9.

In a preceding communication we described a regio- and stereospecific model synthesis of the racemic diaminodideoxylyxopyranose 3 (2). This aminosugar was easily obtained in three steps : i) regiospecific Diels-Alder cycloaddition of dihydropyridine 1 with nitrosobenzene led to the "direct" adduct; ii) stereospecific cis-hydroxylation with potassium permanganate gave 2; iii) hydrogenolysis of the N-0 bond of 2 yielded 3. High-field ¹H-NMR permitted the unambiguous determination, both of the relative configuration and of the predominant conformation, as depicted in formula 3 for the α -<u>D</u> enantiomer (Scheme 1) (2).

The introduction of an anilino-group -instead of a free primary amine- is a major drawback of this first synthetic approach, since the phenyl moiety is difficult to remove -if at all- in a latter step. It shoud be noted however that in a few instances some para-substituted anilino derivatives could be cleaved, leading to the corresponding free amino groups (3).

Scheme 1

In order to circumvent this difficulty we turned our attention to the highly reactive acylnitrosoderivatives which were obtained by <u>in situ</u> oxidation

of the corresponding hydroxamic acids with tetraalkylammonium periodate (4). With these experimental conditions and in the presence of dihydropyridine $\underline{1}$ Diels-Alder cycloaddition occurs instantaneously, leading in high yield to one, or to both, of the two possible regioisomers $\underline{4}$ and $\underline{5}$ (4) (Scheme 2). By repeating a three-step reaction sequence, which is similar to the one depicted in Scheme 1, one obtaines aminosugar derivatives which bear acylamino-groups; either in position 1 (axial orientation), or in position 4 (equatorial orientation), depending on the regiospecificity or the regioselectivity of the cycloaddition step. Quite obviously, acylamino-groups can be cleaved more easily to the corresponding free amino-derivatives, than would be the case for the anilino-group.

It turned out that the five acylnitroso derivatives, which we let react with dihydropyridine $\underline{1}$, can be divided into two classes (<u>Table 1</u>) :

- the benzoylnitroso PhCON=0 and the phenylacetylnitroso PhCH₂CON=0 dienophiles led in a regiospecific way, and in close to quantitative yields, to the "inverse" cycloadducts <u>5a</u> and <u>5b</u> respectively;
- the methoxycarbonylnitroso CH₃OCON=0, the benzyloxycarbonylnitroso PhCH₂OCON=0, and the dimethylcarbamoylnitroso Me₂NCON=0 dienophiles led in a non-regiospecific way to the "direct" adducts <u>4c-4e</u>, as well as to the "inverse" adducts 5c-5e; once again in high overall yields.

Z	"direct" adducts <u>4</u>	"inverse" adducts <u>5</u>	
a) PhCO	0 %	100 %	
b) PhCH ₂ CO	0 %	100 %	
с) СН ₃ 0СО	50 %	50 %	
d) РhСн ₂ 0С0	50 %	50 %	
e) Me ₂ NCO	75 %	2 5 %	

<u>Table 1</u> : relative yields of isolated cycloadducts $\underline{4}$ and $\underline{5}$ obtained when letting Z-N=0 dienophiles react with dihydropyridine $\underline{1}$.

In a typical experiment tetra-n-propylammonium periodate (0.4 equiv.) was added to a methylene chloride solution of methoxyhydroxamic acid MeOCONHOH (1.1 equiv.) and dihydropyridine $\underline{1}$ (1.0 equiv.); this reaction mixture was stirred and kept at 0°C, whereby $\underline{1}$ is consumed rapidly without being notably oxidized. The two cycloadducts $\underline{4c}$ and $\underline{5c}$ formed quantitatively in equal amounts and were separated by flash-chromatography (5), which was performed at -10°C in order to prevent the less stable cycloadduct $\underline{4c}$ from being decomposed on silica. Cis-hydroxylation of the mixtures of compounds $\underline{4}$ and $\underline{5}$ was performed with catalytic amounts of 0s0₄ in the presence of an excess of N-methylmorpholine-oxide in a water/acetone solution (6). These oxidation reactions proceeded in a ste-

reospecific fashion -i.e. through anti-approach of $0s0_4$ with respect to the N-0 bridge-, albeit in moderate yields only (50 to 60 %), and led to the cisglycols <u>6a</u> and <u>6b</u> in the "inverse" series, and to the cis-glycol pairs <u>6c/7c</u>, <u>6d/7d</u> and <u>6e/7e</u> in the "direct-inverse" series. All glycols were characterized via their diacetate derivatives (7); only a few of them could be characterized as such. Hydrogenolysis of the N-0 bond of these diacetates over Pd/C, followed by exhaustive acetylation, led in excellent yields to the expected racemic peracetyl diamino-dideoxy-lyxopyranose compounds 8 and 9 respectively (Scheme 2).

There are two notable exceptions though : treatment of glycol <u>6d</u>, mp 110-111°C, with $H_2/Pd/C$ led to the hydrogenolysis of both the N-O and of the benzyloxygen bonds, and gave in high yield the free aminotrihydroxypiperidine derivative <u>8</u> (R = Z = H) which was characterized as its tetraacetate <u>8</u> (R = Z = Ac) mp 177.5-178° C. The bis-acetylated derivative of the regioisomer <u>7d</u>, when treated with the same experimental hydrogenation conditions, underwent also the double hydrogenolysis, leading after exhaustive acetylation to the tetraacetyl derivative <u>9</u> (R = Z = Ac), mp 179-180° C (<u>Scheme 2</u>).

Determination of the structure, the relative configuration and the major conformation of all diamino-dideoxy-lyxopyranose derivatives $\underline{8}$ and $\underline{9}$ could be achieved unambiguously, using high-field pmr measurements. In <u>Table 2</u> we reproduce pmr data of the ring hydrogen atoms of the triacetylated amino-sugars $\underline{8c}$ and $\underline{9c}$ (R = Ac). These spectra were taken at 50° C, a temperature which is slightly higher than the coalescence temperature of the urethane rotamer pairs.

We notice in particular that both stereoisomers have essentially the same chair conformation, the hydrogen atoms H-3, H-4 and H-5a being axial, while H-2 is equatorial. Since the C-4 substituent is equatorial in all amino-sugars, it follows -if only for chemical reasons- that the C-1 substituent must be axial. For all amino-sugars we notice the α -anomer effect (i.e. an axial orientation) for the <u>D</u>-enantiomers, a configuration which has been observed for all amino-sugars bearing a nitrogen atom in the ring (8).

<u>Table 2</u>: ¹H NMR spectra of the ring hydrogen atoms of the triacetate diaminodideoxy-lyxose derivatives $\underline{8c}$ and $\underline{9c}$ (R = Ac)*.

	H-1	H-2	н-3	H-4	H-5e	H-5a	
<u>8c</u>	6.70 m	5.28 m	5.16 dd	4.13 ddd	4.39 dd	2.90 dd	
	$J_{1,2}^{=2.8}$	$J_{2,3} = 3 \cdot 2$	^J 3,4 ^{=11.0}	^J 4,NH ⁼⁷	$J_{4,5e}^{=5.5}$	J _{4,5a} =11.4	$J_{5a, 5e} = 13.0$
<u>9c</u>	5.90 dd $J_{1,2}=2.9$	t	dd	dt	4.35 dd J _{4,5e} =5.0	3.06 dd J _{4,5a} =10.0	J _{5a,5e} =13.5

* Chemical shifts measured at 50°C in CDCl₃, expressed in δ (ppm); coupling constants in Hz; internal reference : SiMe₄.

We thank Dr. H. Strub for the measurements of the high-field pmr spectra.

REFERENCES AND NOTES

- Presented at the <u>4th REGIO-Symposium in Organic and Bioorganic Chemistry</u>, 26-28 September 1984 at Wintzfelden France, which was organized by the universities of Basel, Switzerland, Freiburg i. Br., Germany, and Mulhouse, France
- 2) J. Streith, G. Augelmann, H. Fritz and H. Strub, <u>Tetrahedron Lett.</u>, <u>23</u>, 1909 (1982)
- 3) G. Kresze and E. Kysela, Liebigs Ann. Chem., 1981, 202
- 4) G.W. Kirby, Chem. Rev., 1977, 1
- 5) W.C. Still, M. Kahn, and A. Mitra, <u>J. Org. Chem</u>., <u>43</u>, 2923 (1978)
- 6) V. Van Rheenen, R.C. Kelly and D.Y. Cha, <u>Tetrahedron Lett.</u>, <u>1976</u>, 1973;
 V. Van Rheenen, D.Y. Cha and W.H. Hartley, <u>Org. Syn</u>., <u>58</u>, 44 (1978)
- 7) All compounds gave satisfactory elemental and spectral analyses. High-field pmr spectra of all aminosugar polyacetates $\underline{8}$ and $\underline{9}$ led to unambiguous configurational and conformational assignments.
- 8) H. Paulsen and F. Leupold, <u>Chem. Ber.</u>, <u>102</u>, 2804 (1969).

(Received in France 19 July 1984)